

铣削机器人能够在管段内打磨1/10毫米。根据预期用途,它们可以与管线的尺寸相匹配,当与标准操作元件结合使用时,它们可以作用于一段管线上的每一点。检查员系统机器人正被用于站的现代化改造。由于这些机器人的能力,许多反应堆可以得到维护。
使用领域
对于管道喷嘴,有两种非常重要的材料。它们是Inconel 600(喷嘴材料)和SA508-69(安全端)。为了使这两种材料能够适当地连接在一起,必须使用合适的焊接覆层。这些焊接覆层是在大约15-20年前开发的,不再代表焊接技术的前沿。







麻省理工学院成功研制出世界上台计算机数控(CNC)铣床.数控铣床的出现带来了新的机械打磨设备和铸件后加工打磨的新工艺。用数控铣床进行铸造后处理时,将待抛光的工件固定在铣床工作空间的标准化夹紧装置上,由数控程序控制磨具进行打磨加工.虽然数控铣床可以用于铸件的后加工打磨,但其工作空间小,机床灵活性差。作为机床的替代品,工业机器人越来越多地应用于打磨领域。1986年,麻省理工学院的Tate,A. R .利用机器人实现了焊缝的自动打磨,将向力控制在40 N,参考力的大频率控制在2.3 Hz.后来,另一位研究人员彭J等人,设计了被动打磨装置,研究了打磨过程的特点以及偏转角在被动打磨过程中的影响。为了满足打磨复杂零件的要求,哈尔滨工业大学郭等设计并研制了一种工作空间灵活、姿态调整灵活的复合五自由度工作机器人


标准配置的角向打磨机和偏心打磨机。
伺服电机驱动的角磨机
大多数机器人引导的打磨和抛光机床是由空气操作的。通常,考虑到24小时的操作环境,这些机器达到了它们的极限。频繁的服务中断加上极高的空气消耗增加了能源成本,这也将影响利润。此外,气动工具在负载下速度会下降,这会对表面光洁度产生不利影响。根据表面质量要求,打磨或抛光工具的旋转通常需要顺时针和逆时针旋转,这是气动工具无法实现的。所有这些关键要求都可以通过SUHNER的标准或excenter设计版本的伺服驱动工具来满足。重量轻、功率大的伺服电机用于获得高达12,000转/分的高速,同步皮带驱动部件用于连续运行。适配器法兰有助于所有机器人法兰设计的交换和连接。交付包括一个伺服控制模块。所有打磨工具都配有M 14主轴,以便使用市售打磨盘。