

铣削机器人能够在管段内打磨1/10毫米。根据预期用途,它们可以与管线的尺寸相匹配,当与标准操作元件结合使用时,它们可以作用于一段管线上的每一点。检查员系统机器人正被用于站的现代化改造。由于这些机器人的能力,许多反应堆可以得到维护。
使用领域
对于管道喷嘴,有两种非常重要的材料。它们是Inconel 600(喷嘴材料)和SA508-69(安全端)。为了使这两种材料能够适当地连接在一起,必须使用合适的焊接覆层。这些焊接覆层是在大约15-20年前开发的,不再代表焊接技术的前沿。







迄今为止,很少有人对手工打磨技术进行研究。2021年,赵景慧等人提出并开发了一种手持式可充电打磨工具,可以辅助人员维护遭受金属部件腐蚀和接触面氧化发热的动力设备,从而提高打磨速度。2022年,惠特莫尔(Whitmore,L)等人发明了一种精密打磨工具,用于手工打磨样品;该工具可由3D打印机制备并且可以打磨表面精度高达10微米的样品
手工打磨对人的依赖性很强,操作对象主要是小批量样品。手工打磨远远不能满足大批量、低成本工件打磨的要求,也无法避免打磨过程中的噪音、振动和划痕造成的损伤


传统打磨是打磨工具接合工件的结果。这通常作为机器中的开环定位功能来完成。如果打磨是用CNC完成的,有工具磨损补偿功能来确保精度,但它仍然是一个严格的定位过程——可能会出现误差。缺少的要素是测量磨具末端的力。
SET机器人打磨机在机器人臂、主轴电机和砂轮之间集成了一个应变装置。传感器实时测量砂轮、机器人和工件之间的力。这就形成了一个围绕打磨过程的闭环,可以通过系统控制器进行监控和调节。
当机器人从工件上移除材料并到达需要多次打磨的部分时,应变装置会检测回推,这也反映在机器人的定位系统中。通过记录“离开位置”的状态,机器人可以回来,在受影响的区域进行第二次通过,并消除高点。SET流程已经过测试,正在车间生产、可重复的零件。