

作为旋转打磨模式与马达和气动源相结合的结果,气动打磨设备和电动打磨设备出现了。该设备有两种打磨方式。一种是在打磨大型零件时,将待抛光的工件固定,电动打磨设备相对工件表面移动,完成打磨。另一种是在加工小零件时,电动打磨设备是固定的,通过移动工件实现旋转磨头的相对运动来进行打磨。
1875年,Brown和Sheeper设计了锯床和磨床,结合机械设备的打磨方法开始出现。这种结合了手工和基于设备的打磨的打磨方法一直延续至今。根据磨床的原理,已经为特殊零件设计了特殊的磨床







激光传感器也广泛应用于打磨领域。高,Y等开展了大型零件焊接前处理技术的机器人打磨技术研究,并采用了激光轮廓仪进行现场测量、规划和加工。在慕尼黑举行的AUTOMATICA 2018展会上,Fraunhofer IPA和Ros Industrial Cortium成员PILZ展示了一款现场测量-计划-过程打磨机器人。在前人研究的基础上,Ge等人进一步提出并构建了基于激光传感器的机器人焊缝打磨系统.机器人末端集成了传感装置和自制打磨工具,用于打磨作业。粗磨后焊缝高度保持在0.1 mm左右,精磨后平均表面粗糙度为0.351 μm。


Kuka Titan系列机器人,该机器人带有一个40马力的主轴电机作为末端执行器。这个令人生畏的组合创造了一个巨大的机器人打磨工具。该机器人有6个运动轴,延伸距离近12英尺,能够以惊人的灵活性完成大范围的工作。除了机器人的尺寸之外,它还具有1650磅的有效载荷能力,使其能够携带巨大的40马力主轴电机进行打磨,并能够在主轴末端产生足够的力来进行一些严重的材料去除。
任何打磨环境的主要限制之一是材料的去除速度。这是材料硬度和横截面的函数,或者是被去除材料的体积。高速主轴电机用于通过简单地加速来改善材料去除,通常速度为10,000至40,000 rpm。然而,在打磨过程中,去除的材料量会出现不必要的变化。